Fractional rotational Brownian motion in a uniform dc external field

Yuri P. Kalmykov
Phys. Rev. E 70, 051106 – Published 17 November 2004

Abstract

The longitudinal and transverse components of the complex dielectric susceptibility tensor of an assembly of dipolar particles subjected to a dc bias field are evaluated in the context of a fractional noninertial rotational diffusion model. Exact and approximate solutions for the dielectric dispersion and absorption spectra are obtained. It is shown that a knowledge of the effective relaxation times for normal rotational diffusion is sufficient to predict accurately the anomalous dielectric relaxation behavior of the system for all time scales of interest. Simple equations for the characteristic frequencies of the dielectric loss spectra are obtained in terms of the physical model parameters (dimensionless field and fractional exponent). The model explains the anomalous (Cole-Cole like) relaxation of complex dipolar systems, where the anomalous exponent differs from unity (corresponding to the normal dielectric relaxation), i.e., the relaxation process is characterized by a broad distribution of relaxation times.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 30 June 2004

DOI:https://doi.org/10.1103/PhysRevE.70.051106

©2004 American Physical Society

Authors & Affiliations

Yuri P. Kalmykov

  • Groupe de Physique Moléculaire, MEPS, Université de Perpignan, 52, Avenue Paul Alduy, 66860, Perpignan Cedex, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 70, Iss. 5 — November 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×