Error and repair catastrophes: A two-dimensional phase diagram in the quasispecies model

Emmanuel Tannenbaum and Eugene I. Shakhnovich
Phys. Rev. E 69, 011902 – Published 15 January 2004
PDFExport Citation

Abstract

This paper develops a two-gene, single fitness peak model for determining the equilibrium distribution of genotypes in a unicellular population which is capable of genetic damage repair. The first gene, denoted by σvia, yields a viable organism with first-order growth rate constant k>1 if it is equal to some target “master” sequence σvia,0. The second gene, denoted by σrep, yields an organism capable of genetic repair if it is equal to some target “master” sequence σrep,0. This model is analytically solvable in the limit of infinite sequence length, and gives an equilibrium distribution which depends on μLε, the product of sequence length and per base pair replication error probability, and εr, the probability of repair failure per base pair. The equilibrium distribution is shown to exist in one of the three possible “phases.” In the first phase, the population is localized about the viability and repairing master sequences. As εr exceeds the fraction of deleterious mutations, the population undergoes a “repair” catastrophe, in which the equilibrium distribution is still localized about the viability master sequence, but is spread ergodically over the sequence subspace defined by the repair gene. Below the repair catastrophe, the distribution undergoes the error catastrophe when μ exceeds lnk/εr, while above the repair catastrophe, the distribution undergoes the error catastrophe when μ exceeds lnk/fdel, where fdel denotes the fraction of deleterious mutations.

  • Received 9 June 2003

DOI:https://doi.org/10.1103/PhysRevE.69.011902

©2004 American Physical Society

Authors & Affiliations

Emmanuel Tannenbaum* and Eugene I. Shakhnovich

  • Harvard University, Cambridge, Massachusetts 02138, USA

  • *Electronic address: etannenb@fas.harvard.edu

References (Subscription Required)

Click to Expand
Issue

Vol. 69, Iss. 1 — January 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×