Smectic phases of semiflexible manifolds: Constant-pressure ensemble

Lianghui Gao and Leonardo Golubović
Phys. Rev. E 66, 051918 – Published 27 November 2002
PDFExport Citation

Abstract

We pursue the constant-pressure ensemble approach to elucidate the statistical mechanics of the smectic phases of semiflexible manifolds, such as two-dimensional smectic phases of long semiflexible polymers and three-dimensional lamellar fluid membrane phases. We use this approach to consider in detail sterically stabilized phases of semiflexible polymers in two-dimensional (2D) smectic systems. For these 2D systems, we obtain the universal constants characterizing the entropic repulsion between semiflexible polymers, such as those in the osmotic pressure P=α(kBT)4/3/κ1/3(aamin)5/3 with α found here to be 0.432 (here, a is the smectic phase period, and amin and κ are the polymer cross-sectional diameter and bending rigidity constant, respectively). We address, by numerical simulations and analytic arguments, finite stacks of N semiflexible manifolds, and discuss in detail the practically interesting thermodynamic limit N. We show that the thermodynamic limit is quickly approached within the constant-pressure ensemble: Already from numerical simulations involving just few semiflexible polymers under constant isotropic pressure, one can obtain the infinite 2D smectic equation of state within a few percent accuracy. We use our results to discuss the competition of electrostatic and entropic effects in quasi-2D smectic phases of DNA-cationic-lipid complexes. We use our quantitative results to discuss in detail the elasticity, topological defects, anomalous elasticity, and the effects of externally applied tension in sterically stabilized 2D smectic phases of long semiflexible polymers.

  • Received 31 January 2002

DOI:https://doi.org/10.1103/PhysRevE.66.051918

©2002 American Physical Society

Authors & Affiliations

Lianghui Gao and Leonardo Golubović

  • Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315

References (Subscription Required)

Click to Expand
Issue

Vol. 66, Iss. 5 — November 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×