Susceptibility and percolation in two-dimensional random field Ising magnets

E. T. Seppälä and M. J. Alava
Phys. Rev. E 63, 066109 – Published 18 May 2001
PDFExport Citation

Abstract

The ground-state structure of the two-dimensional random field Ising magnet is studied using exact numerical calculations. First we show that the ferromagnetism, which exists for small system sizes, vanishes with a large excitation at a random field strength-dependent length scale. This breakup length scale Lb scales exponentially with the squared random field, exp(A/Δ2). By adding an external field H, we then study the susceptibility in the ground state. If L>Lb, domains melt continuously and the magnetization has a smooth behavior, independent of system size, and the susceptibility decays as L2. We define a random field strength-dependent critical external field value ±Hc(Δ) for the up and down spins to form a percolation type of spanning cluster. The percolation transition is in the standard short-range correlated percolation universality class. The mass of the spanning cluster increases with decreasing Δ and the critical external field approaches zero for vanishing random field strength, implying the critical field scaling (for Gaussian disorder) Hc(ΔΔc)δ, where Δc=1.65±0.05 and δ=2.05±0.10. Below Δc the systems should percolate even when H=0. This implies that even for H=0 above Lb the domains can be fractal at low random fields, such that the largest domain spans the system at low random field strength values and its mass has the fractal dimension of standard percolation Df=91/48. The structure of the spanning clusters is studied by defining red clusters, in analogy to the “red sites” of ordinary site percolation. The sizes of red clusters define an extra length scale, independent of L.

  • Received 22 December 2000

DOI:https://doi.org/10.1103/PhysRevE.63.066109

©2001 American Physical Society

Authors & Affiliations

E. T. Seppälä and M. J. Alava

  • Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

References (Subscription Required)

Click to Expand
Issue

Vol. 63, Iss. 6 — June 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×