Gravity in two-time physics

Itzhak Bars
Phys. Rev. D 77, 125027 – Published 24 June 2008

Abstract

The field theoretic action for gravitational interactions in d+2 dimensions is constructed in the formalism of two-time (2T) physics. General relativity in d dimensions emerges as a shadow of this theory with one less time and one less space dimensions. The gravitational constant turns out to be a shadow of a dilaton field in d+2 dimensions that appears as a constant to observers stuck in d dimensions. If elementary scalar fields play a role in the fundamental theory (such as Higgs fields in the standard model coupled to gravity), then their shadows in d dimensions must necessarily be conformal scalars. This has the physical consequence that the gravitational constant changes at each phase transition (inflation, grand unification, electroweak, etc.), implying interesting new scenarios in cosmological applications. The fundamental action for pure gravity, which includes the spacetime metric GMN(X), the dilaton Ω(X), and an additional auxiliary scalar field W(X), all in d+2 dimensions with two times, has a mix of gauge symmetries to produce appropriate constraints that remove all ghosts or redundant degrees of freedom. The action produces on-shell classical field equations of motion in d+2 dimensions, with enough constraints for the theory to be in agreement with classical general relativity in d dimensions. Therefore this action describes the correct classical gravitational physics directly in d+2 dimensions. Taken together with previous similar work on the standard model of particles and forces, the present paper shows that 2T physics is a general consistent framework for a physical theory. Furthermore, the 2T-physics approach reveals more physical information for observers stuck in the shadow in d dimensions in the form of hidden symmetries and dualities, that are largely concealed in the usual one-time formulation of physics.

  • Received 16 April 2008

DOI:https://doi.org/10.1103/PhysRevD.77.125027

©2008 American Physical Society

Authors & Affiliations

Itzhak Bars

  • Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-2535, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 12 — 15 June 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×