Predictive formulation of the Nambu–Jona-Lasinio model

O. A. Battistel, G. Dallabona, and G. Krein
Phys. Rev. D 77, 065025 – Published 27 March 2008

Abstract

A novel strategy to handle divergences typical of perturbative calculations is implemented for the Nambu–Jona-Lasinio model and its phenomenological consequences investigated. The central idea of the method is to avoid the critical step involved in the regularization process, namely, the explicit evaluation of divergent integrals. This goal is achieved by assuming a regularization distribution in an implicit way and making use, in intermediary steps, only of very general properties of such regularization. The finite parts are separated from the divergent ones and integrated free from effects of the regularization. The divergent parts are organized in terms of standard objects, which are independent of the (arbitrary) momenta running in internal lines of loop graphs. Through the analysis of symmetry relations, a set of properties for the divergent objects are identified, which we denominate consistency relations, reducing the number of divergent objects to only a few. The calculational strategy eliminates unphysical dependencies of the arbitrary choices for the routing of internal momenta, leading to ambiguity-free, and symmetry-preserving physical amplitudes. We show that the imposition of scale properties for the basic divergent objects leads to a critical condition for the constituent quark mass such that the remaining arbitrariness is removed. The model becomes predictive in the sense that its phenomenological consequences do not depend on possible choices made in intermediary steps. Numerical results are obtained for physical quantities at the one-loop level for the pion and sigma masses and pion-quark and sigma-quark coupling constants.

  • Figure
  • Figure
  • Received 27 April 2007

DOI:https://doi.org/10.1103/PhysRevD.77.065025

©2008 American Physical Society

Authors & Affiliations

O. A. Battistel1, G. Dallabona2, and G. Krein3

  • 1Departamento de Física, Universidade Federal de Santa Maria, 97119-900 Santa Maria, Rio Grande do Sul, Brazil
  • 2Departamento de Ciências Exatas, Universidade Federal de Lavras, Caixa Postal 37, 37200-000, Lavras, Minas Gerais, Brazil
  • 3Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, Brazil

See Also

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 6 — 15 March 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×