Age-dependent decay in the landscape

Sergei Winitzki
Phys. Rev. D 77, 063508 – Published 6 March 2008

Abstract

The picture of the “multiverse” arising in diverse cosmological scenarios involves transitions between metastable vacuum states. It was pointed out by Krauss and Dent that the transition rates decrease at very late times, leading to a dependence of the transition probability between vacua on the age of each vacuum region. I investigate the implications of this non-Markovian, age-dependent decay on the global structure of the spacetime in landscape scenarios. I show that the fractal dimension of the eternally inflating domain is precisely equal to 3, instead of being slightly below 3, which is the case in scenarios with purely Markovian, age-independent decay. I develop a complete description of a non-Markovian landscape in terms of a nonlocal master equation. Using this description I demonstrate by an explicit calculation that, under some technical assumptions about the landscape, the probabilistic predictions of our position in the landscape are essentially unchanged, regardless of the measure used to extract these predictions. I briefly discuss the physical plausibility of realizing non-Markovian vacuum decay in cosmology in view of the possible decoherence of the metastable quantum state.

  • Figure
  • Received 28 December 2007

DOI:https://doi.org/10.1103/PhysRevD.77.063508

©2008 American Physical Society

Authors & Affiliations

Sergei Winitzki

  • Department of Physics, University of Heidelberg, Germany

  • *On leave from Arnold Sommerfeld Center, Department of Physics, University of Munich, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 6 — 15 March 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×