Toward explaining black hole entropy quantization in loop quantum gravity

Hanno Sahlmann
Phys. Rev. D 76, 104050 – Published 29 November 2007

Abstract

In a remarkable numerical analysis of the spectrum of states for a spherically symmetric black hole in loop quantum gravity, Corichi, Diaz-Polo and Fernandez-Borja found that the entropy of the black hole horizon increases in what resembles discrete steps as a function of area. In the present article we reformulate the combinatorial problem of counting horizon states in terms of paths through a certain space. This formulation sheds some light on the origins of this steplike behavior of the entropy. In particular, using a few extra assumptions we arrive at a formula that reproduces the observed step length to a few tenths of a percent accuracy. However, in our reformulation the periodicity ultimately arises as a property of some complicated process, the properties of which, in turn, depend on the properties of the area spectrum in loop quantum gravity in a rather opaque way. Thus, in some sense, a deep explanation of the observed periodicity is still lacking.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 2 October 2007

DOI:https://doi.org/10.1103/PhysRevD.76.104050

©2007 American Physical Society

Authors & Affiliations

Hanno Sahlmann

  • Spinoza Institute/ITP, Utrecht University

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 76, Iss. 10 — 15 November 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×