Black holes at the IceCube neutrino telescope

Luis A. Anchordoqui, Matthew M. Glenz, and Leonard Parker
Phys. Rev. D 75, 024011 – Published 9 January 2007

Abstract

If the fundamental Planck scale is about a TeV and the cosmic neutrino flux is at the Waxman-Bahcall level, quantum black holes are created daily in the Antarctic ice cap. We reexamine the prospects for observing such black holes with the IceCube neutrino-detection experiment. To this end, we first revise the black hole production rate by incorporating the effects of inelasticty, i.e., the energy radiated in gravitational waves by the multipole moments of the incoming shock waves. After that we study in detail the process of Hawking evaporation accounting for the black hole’s large momentum in the lab system. We derive the energy spectrum of the Planckian cloud which is swept forward with a large, O(106), Lorentz factor. (It is noteworthy that the boosted thermal spectrum is also relevant for the study of near-extremal supersymmetric black holes, which could be copiously produced at the Large Hadron Collider.) In the semiclassical regime, we estimate the average energy of the boosted particles to be less than 20% the energy of the ν progenitor. Armed with such a constraint, we determine the discovery reach of IceCube by tagging on soft (relative to what one would expect from charged current standard model processes) muons escaping the electromagnetic shower bubble produced by the black hole’s light descendants. The statistically significant 5σ excess extends up to a quantum gravity scale 1.3TeV.

  • Figure
  • Figure
  • Figure
  • Received 3 November 2006

DOI:https://doi.org/10.1103/PhysRevD.75.024011

©2007 American Physical Society

Authors & Affiliations

Luis A. Anchordoqui, Matthew M. Glenz, and Leonard Parker

  • Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 75, Iss. 2 — 15 January 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×