Quantum-classical crossover in electrodynamics

Janos Polonyi
Phys. Rev. D 74, 065014 – Published 18 September 2006

Abstract

A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-sea can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of the quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.

  • Received 22 May 2006

DOI:https://doi.org/10.1103/PhysRevD.74.065014

©2006 American Physical Society

Authors & Affiliations

Janos Polonyi*

  • Theoretical Physics Laboratory, Louis Pasteur University, Strasbourg, France

  • *Electronic address: polonyi@fresnel.u-strasbg.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 74, Iss. 6 — 15 September 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×