Quintessence in a brane world

Shuntaro Mizuno and Kei-ichi Maeda
Phys. Rev. D 64, 123521 – Published 27 November 2001
PDFExport Citation

Abstract

We reanalyze a new quintessence scenario in a brane world model, assuming that a quintessence scalar field is confined in our three-dimensional brane world. We study three typical quintessence models: (1) an inverse-power-law potential, (2) an exponential potential, and (3) a kinetic-term quintessence (k-essence) model. With an inverse-power-law potential model [V(φ)=μα+4φα], we show that in the quadratic dominant stage the density parameter of a scalar field Ωφ decreases as a4(α2)/(α+2) for 2<α<6, which is followed by the conventional quintessence scenario. This feature provides us wider initial conditions for successful quintessence. In fact, even if the universe is initially scalar-field dominated, it eventually evolves into a radiation dominated era in the ρ2-dominant stage. Assuming an equipartition condition, we discuss constraints on parameters, with the result that α>~4 is required. This constraint also restricts the value of the five-dimensional Planck mass, e.g., 4×1014m4m53×1013m4 for α=5. For an exponential potential model V=μ4exp(λφ/m4), we may not find a natural and successful quintessence scenario as it is, while for a kinetic-term quintessence, we find a tracking solution even in the ρ2-dominant stage, rather than the Ωφ-decreasing solution for an inverse-power-law potential. Then we do find a slight advantage in a brane world. Only the density parameter increases more slowly in the ρ2-dominant stage, which provides a wider initial condition for successful quintessence.

  • Received 2 August 2001

DOI:https://doi.org/10.1103/PhysRevD.64.123521

©2001 American Physical Society

Authors & Affiliations

Shuntaro Mizuno

  • Department of Physics, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan

Kei-ichi Maeda

  • Department of Physics, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan
  • Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan

References (Subscription Required)

Click to Expand
Issue

Vol. 64, Iss. 12 — 15 December 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×