Model universe with variable space dimension: Its dynamics and wave function

Reza Mansouri and Forough Nasseri
Phys. Rev. D 60, 123512 – Published 24 November 1999
PDFExport Citation

Abstract

Assuming the space dimension is not constant, but varies with the expansion of the universe, a Lagrangian formulation of a toy universe model is given. After a critical review of previous works, the field equations are derived and discussed. It is shown that this generalization of the FRW cosmology is not unique. There is a free parameter in the theory, C, with which we can fix the dimension of space, say, at the Planck time. Different possibilities for this dimension are discussed. The standard FRW model corresponds to the limiting case C+. Depending on the free parameter of the theory, C, the expansion of the model can behave differently from the standard cosmological models with constant dimension. This is explicitly studied in the framework of quantum cosmology. The Wheeler-DeWitt equation is written down. It turns out that in our model universe, the potential of the Wheeler-DeWitt equation has different characteristics relative to the potential of the de Sitter minisuperspace. Using the appropriate boundary conditions and the semiclassical approximation, we calculate the wave function of our model universe. In the limit of C+, corresponding to the case of constant space dimension, our wave function does not have a unique behavior. It can either lead to the Hartle-Hawking wave function or to a modified Linde wave function, or to a more general one, but not to that of Vilenkin. We also calculate the probability density in our model universe. It is always more than the probability density of the de Sitter minisuperspace in three-space as suggested by Vilenkin, Linde, and others. In the limit of constant space dimension, the probability density of our model universe approaches that of the Vilenkin and Linde probability density, being exp(2|SE|), where SE is the Euclidean action. Our model universe indicates therefore that the Vilenkin wave function is not stable with respect to the variation of space dimension.

  • Received 22 February 1999

DOI:https://doi.org/10.1103/PhysRevD.60.123512

©1999 American Physical Society

Authors & Affiliations

Reza Mansouri* and Forough Nasseri

  • Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran
  • Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran, Iran

  • *Email address: mansouri@theory.ipm.ac.ir
  • Email address: naseri@theory.ipm.ac.ir

References (Subscription Required)

Click to Expand
Issue

Vol. 60, Iss. 12 — 15 December 1999

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×