Observing long cosmic strings through gravitational lensing

Andrew A. de Laix
Phys. Rev. D 56, 6193 – Published 15 November 1997
PDFExport Citation

Abstract

We consider the gravitational lensing produced by long cosmic strings formed in a grand-unified theory scale phase transition. We derive a formula for the deflection of photons which pass near the strings that reduces to an integral over the light cone projection of the string configuration plus constant terms which are not important for lensing. Our strings are produced by performing numerical simulations of cosmic string networks in flat, Minkowski space ignoring the effects of cosmological expansion. These strings have more small scale structure than those from an expanding universe simulation—fractal dimension 1.3 for Minkowski versus 1.1 for expanding—but share the same qualitative features. Lensing simulations show that for both pointlike and extended objects strings produce patterns unlike more traditional lenses, and, in particluar, the kinks in strings tend to generate demagnified images which reside close to the string. Thus lensing acts as a probe of the small scale structure of a string. Estimates of lensing probablity suggest that for string energy densities consistent with string seeded structure formation, on the order of tens of string lenses should be observed in the Sloan Digital Sky Survey (SDSS) quasar catalog. We propose a search strategy in which string lenses would be identified in the SDSS quasar survey, and the string nature of the lens can be confirmed by the observation of nearby high redshift galaxies which are also be lensed by the string.

  • Received 28 May 1997

DOI:https://doi.org/10.1103/PhysRevD.56.6193

©1997 American Physical Society

Authors & Affiliations

Andrew A. de Laix

  • Case Western Reserve University, Department of Physics, Cleveland, Ohio 44106-7079

References (Subscription Required)

Click to Expand
Issue

Vol. 56, Iss. 10 — 15 November 1997

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×