The postulates of gravitational thermodynamics

Erik A. Martinez
Phys. Rev. D 54, 6302 – Published 15 November 1996
PDFExport Citation

Abstract

The general principles and logical structure of a thermodynamic formalism that incorporates strongly self-gravitating systems are presented. This framework generalizes and simplifies the formulation of thermodynamics developed by Callen. The definition of extensive variables, the homogeneity properties of intensive parameters, and the fundamental problem of gravitational thermodynamics are discussed in detail. In particular, extensive parameters include quasilocal quantities and are naturally incorporated into a set of basic general postulates for thermodynamics. These include additivity of entropies (Massieu functions) and the generalized second law. Fundamental equations are no longer homogeneous first-order functions of their extensive variables. It is shown that the postulates lead to a formal resolution of the fundamental problem despite nonadditivity of extensive parameters and thermodynamic potentials. Therefore, all the results of (gravitational) thermodynamics are an outgrowth of these postulates. The origin and nature of the differences with ordinary thermodynamics are analyzed. Consequences of the formalism include the (spatially) inhomogeneous character of thermodynamic equilibrium states, a reformulation of the Euler equation, and the absence of a Gibbs-Duhem relation.

  • Received 6 May 1996

DOI:https://doi.org/10.1103/PhysRevD.54.6302

©1996 American Physical Society

Authors & Affiliations

Erik A. Martinez*

  • Center for Gravitational Physics and Geometry, Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300

  • *Electronic address: martinez@phys.psu.edu

References (Subscription Required)

Click to Expand
Issue

Vol. 54, Iss. 10 — 15 November 1996

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×