Spherically symmetric systems of fields and black holes. II. Apparent horizon in canonical formalism

P. Hajicek
Phys. Rev. D 30, 1178 – Published 15 September 1984
PDFExport Citation

Abstract

We study the action of a two-dimensional model of gravity found in the preceding paper. We transform the action to the first-order Arnowitt-Deser-Misner form, and work out the generalized momenta and super-Hamiltonians. We propose to foliate the spacetime in such a way that the inside of the apparent horizon will be cut away. In the classical theory, no loss of information for the development of states from I to I+ can result, but in the corresponding quantum theory, some such losses could occur if a black hole evaporates. We study the boundary conditions for the fields at the apparent horizon which are implied by such a foliation, and calculate the corresponding surface correction to the Hamiltonian by the method of Regge and Teitelboim. We generalize the socalled Berger-Chitre-Moncrief-Nutku gauge in such a way that the fields cannot violate the boundary conditions. In this gauge, we perform an explicit total reduction of the canonical formalism so that only the true dynamical variables appear in the Hamiltonian. The reduced Hamiltonian splits into a black hole and a field part.

  • Received 6 February 1984

DOI:https://doi.org/10.1103/PhysRevD.30.1178

©1984 American Physical Society

Authors & Affiliations

P. Hajicek

  • Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

See Also

References (Subscription Required)

Click to Expand
Issue

Vol. 30, Iss. 6 — 15 September 1984

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×