Dimensional mutation and spacelike singularities

Eva Silverstein
Phys. Rev. D 73, 086004 – Published 14 April 2006

Abstract

I argue that string theory compactified on a Riemann surface crosses over at small volume to a higher dimensional background of supercritical string theory. Several concrete measures of the count of degrees of freedom of the theory yield the consistent result that at finite volume, the effective dimensionality is increased by an amount of order 2h/V for a surface of genus h and volume V in string units. This arises in part from an exponentially growing density of states of winding modes supported by the fundamental group, and passes an interesting test of modular invariance. Further evidence for a plethora of examples with the spacelike singularity replaced by a higher dimensional phase arises from the fact that the sigma model on a Riemann surface can be naturally completed by many gauged linear sigma models, whose RG flows approximate time evolution in the full string backgrounds arising from this in the limit of large dimensionality. In recent examples of spacelike singularity resolution by tachyon condensation, the singularity is ultimately replaced by a phase with all modes becoming heavy and decoupling. In the present case, the opposite behavior ensues: more light degrees of freedom arise in the small radius regime. We comment on the emerging zoology of cosmological singularities that results.

  • Received 26 February 2006

DOI:https://doi.org/10.1103/PhysRevD.73.086004

©2006 American Physical Society

Authors & Affiliations

Eva Silverstein

  • SLAC and Department of Physics, Stanford University, Stanford, California 94305-4060, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 73, Iss. 8 — 15 April 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×