Astrophysical S factor of the He3(α,γ)Be7 reaction measured at low energy via detection of prompt and delayed γ rays

F. Confortola et al. (LUNA Collaboration)
Phys. Rev. C 75, 065803 – Published 13 June 2007

Abstract

Solar neutrino fluxes depend both on astrophysical and on nuclear physics inputs, namely on the cross sections of the reactions responsible for neutrino production inside the Solar core. While the flux of solar B8 neutrinos has been recently measured at Superkamiokande with a 3.5% uncertainty and a precise measurement of Be7 neutrino flux is foreseen in the next future, the predicted fluxes are still affected by larger errors. The largest nuclear physics uncertainty to determine the fluxes of B8 and Be7 neutrinos comes from the He3(α,γ)Be7 reaction. The uncertainty on its S-factor is due to an average discrepancy in results obtained using two different experimental approaches: the detection of the delayed γ rays from Be7 decay and the measurement of the prompt γ emission. Here we report on a new high precision experiment performed with both techniques at the same time. Thanks to the low background conditions of the Gran Sasso LUNA accelerator facility, the cross section has been measured at Ec.m.=170, 106, and 93 keV, the latter being the lowest interaction energy ever reached. The S-factors from the two methods do not show any discrepancy within the experimental errors. An extrapolated S(0)=0.560±0.017 keV barn is obtained. Moreover, branching ratios between the two prompt γ-transitions have been measured with 5–8% accuracy.

  • Figure
  • Figure
  • Figure
  • Received 15 January 2007
  • Publisher error corrected 18 June 2007

DOI:https://doi.org/10.1103/PhysRevC.75.065803

©2007 American Physical Society

Corrections

18 June 2007

Erratum

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 75, Iss. 6 — June 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×