Comparison of 1AGeV 197Au+C data with thermodynamics: The nature of the phase transition in nuclear multifragmentation

R. P. Scharenberg et al.
Phys. Rev. C 64, 054602 – Published 1 October 2001
PDFExport Citation

Abstract

Multifragmentation MF results from 1AGeV Au on C have been compared with the Copenhagen statistical multifragmentation model (SMM). The complete charge, mass, and momentum reconstruction of the Au projectile was used to identify high momentum ejectiles leaving an excited remnant of mass A, charge Z, and excitation energy E* which subsequently multifragments. Measurement of the magnitude and multiplicity (energy) dependence of the initial free volume and the breakup volume determines the variable volume parametrization of SMM. Very good agreement is obtained using SMM with the standard values of the SMM parameters. A large number of observables, including the fragment charge yield distributions, fragment multiplicity distributions, caloric curve, critical exponents, and the critical scaling function are explored in this comparison. The two stage structure of SMM is used to determine the effect of cooling of the primary hot fragments. Average fragment yields with Z>~3 are essentially unaffected when the excitation energy is ⩽7 MeV/nucleon. SMM studies suggest that the experimental critical exponents are largely unaffected by cooling and event mixing. The nature of the phase transition in SMM is studied as a function of the remnant mass and charge using the microcanonical equation of state. For light remnants A<~100, backbending is observed indicating negative specific heat, while for A>~170 the effective latent heat approaches zero. Thus for heavier systems this transition can be identified as a continuous thermal phase transition where a large nucleus breaks up into a number of smaller nuclei with only a minimal release of constituent nucleons. Z<~2 particles are primarily emitted in the initial collision and after MF in the fragment deexcitation process.

  • Received 7 June 2000

DOI:https://doi.org/10.1103/PhysRevC.64.054602

©2001 American Physical Society

Authors & Affiliations

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 64, Iss. 5 — November 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×