New measurement of neutron capture resonances in Bi209

C. Domingo-Pardo et al. (n_TOF Collaboration)
Phys. Rev. C 74, 025807 – Published 23 August 2006

Abstract

The neutron capture cross section of Bi209 has been measured at the CERN n_TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of γ-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. γ-Ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by α decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19±3% of the solar bismuth abundance, resulting in an r-process residual of 81±3%. The present (n,γ) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 1 December 2005

DOI:https://doi.org/10.1103/PhysRevC.74.025807

©2006 American Physical Society

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 74, Iss. 2 — August 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×