Measurement of the Sm151(n,γ) cross section from 0.6 eV to 1 MeV via the neutron time-of-flight technique at the CERN n_TOF facility

S. Marrone et al. (n_TOF Collaboration)
Phys. Rev. C 73, 034604 – Published 9 March 2006

Abstract

The Sm151(n,γ) cross section was measured with the time-of-flight technique from 0.6 eV up to 1 MeV relative to the Au standard with an overall uncertainty of typically 6%. Neutrons were produced by spallation at the innovative n_TOF facility at CERN; the γ rays from capture events were detected with organic C6D6 scintillators. Experimental setup and data analysis procedures are described with emphasis on the corrections for detection efficiency, background subtraction, and neutron flux determination. At low energies, resonances could be resolved up to about 1 keV, yielding a resonance integral of 3575±210 b, an average s-wave resonance spacing of D0=1.49±0.07 eV, and a neutron strength function of S0=(3.87±0.33)×104. Maxwellian-averaged capture cross sections are reported for thermal energies between 5 and 100 keV. These results are of relevance for nuclear structure studies, nuclear astrophysics, and nuclear technology. The new value of the Maxwellian-averaged cross section at kT=30 keV is 3.08±0.15 b, considerably larger than previous theoretical estimates, and provides better constraints for the thermodynamic conditions during the occurrence of the slow neutron capture process in low-mass stars during their asymptotic giant branch phase.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 8 June 2005

DOI:https://doi.org/10.1103/PhysRevC.73.034604

©2006 American Physical Society

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 73, Iss. 3 — March 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×