• Open Access

Measurement of inclusive charged-particle jet production in Au + Au collisions at sNN=200 GeV

J. Adam et al. (STAR Collaboration)
Phys. Rev. C 102, 054913 – Published 30 November 2020

Abstract

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at sNN=200 GeV. Jets are reconstructed with the anti-kT algorithm using charged tracks with pseudorapidity |η|<1.0 and transverse momentum 0.2<pT,jetch<30 GeV/c, with jet resolution parameter R=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-pT) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the pT region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<pT,jetch<25 GeV/c and 5<pT,jetch<30 GeV/c, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the pp yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high pT and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of R exhibits no significant evidence for medium-induced broadening of the transverse jet profile for R <0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
13 More
  • Received 3 June 2020
  • Revised 15 September 2020
  • Accepted 12 October 2020

DOI:https://doi.org/10.1103/PhysRevC.102.054913

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsParticles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 102, Iss. 5 — November 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×