Heavy-fermion metals with hybridization nodes: Unconventional Fermi liquids and competing phases

Heidrun Weber and Matthias Vojta
Phys. Rev. B 77, 125118 – Published 13 March 2008

Abstract

Microscopic models for heavy-fermion materials often assume a local, i.e., momentum-independent, hybridization between the conduction band and the local-moment f electrons. Motivated by recent experiments, we consider situations where this neglect of momentum dependence is inappropriate, namely, when the hybridization function has nodes in momentum space. We explore the thermodynamic and optical properties of the highly anisotropic heavy Fermi liquid, resulting from Kondo screening in a higher angular-momentum channel. The dichotomy in momentum space has interesting consequences: while, e.g., the low-temperature specific heat is dominated by heavy quasiparticles, the electrical conductivity at intermediate temperatures is carried by unhybridized light electrons. We then discuss aspects of the competition between Kondo effect and ordering phenomena induced by intermoment exchange. We propose that the strong momentum-space anisotropy plays a vital role in selecting competing phases. Explicit results are obtained for the interplay of unconventional hybridization with unconventional, magnetically mediated, superconductivity, utilizing variants of large-N mean-field theory. We make connections to recent experiments on CeCoIn5 and other heavy-fermion materials.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 24 October 2007

DOI:https://doi.org/10.1103/PhysRevB.77.125118

©2008 American Physical Society

Authors & Affiliations

Heidrun Weber and Matthias Vojta

  • Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 12 — 15 March 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×