Macroscopic quantum tunneling in globally coupled series arrays of Josephson junctions

M. V. Fistul
Phys. Rev. B 75, 014502 – Published 3 January 2007

Abstract

We present a quantitative analysis of an escape rate for switching from the superconducting state to a resistive one in series arrays of globally coupled Josephson junctions. A global coupling is provided by an external shunting impedance. Such an impedance can strongly suppress both the crossover temperature from the thermal fluctuation to quantum regimes, and the macroscopic quantum tunneling (MQT) in short Josephson junction series arrays. However, in large series arrays we obtain an enhancement of the crossover temperature, and a giant increase of the MQT escape rate. The effect is explained by excitation of a spatial-temporal charge instanton distributed over a whole structure. The model gives a possible explanation of recently published experimental results on an enhancement of the MQT in single crystals of high-Tc superconductors.

  • Figure
  • Figure
  • Figure
  • Received 21 August 2006

DOI:https://doi.org/10.1103/PhysRevB.75.014502

©2007 American Physical Society

Authors & Affiliations

M. V. Fistul

  • Theoretische Physik III, Ruhr-Universität Bochum, D-44801 Bochum, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 75, Iss. 1 — 1 January 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×