Spin-dependent electronic structure of transition-metal atomic chains adsorbed on single-wall carbon nanotubes

E. Durgun and S. Ciraci
Phys. Rev. B 74, 125404 – Published 5 September 2006

Abstract

We present a systematic study of the electronic and magnetic properties of transition-metal (TM) atomic chains adsorbed on the zigzag single-wall carbon nanotubes (SWNTs). We considered the adsorption on the external and internal wall of SWNT and examined the effect of the TM coverage and geometry on the binding energy and the spin polarization at the Fermi level. All those adsorbed chains studied have ferromagnetic ground state, but only their specific types and geometries demonstrated high spin polarization near the Fermi level. Their magnetic moment and binding energy in the ground state display interesting variation with the number of d electrons of the TM atom. We also show that specific chains of transition-metal atoms adsorbed on a SWNT can lead to semiconducting properties for the minority spin bands, but semimetallic for the majority spin bands. Spin polarization is maintained even when the underlying SWNT is subjected to high radial strain. Spin-dependent electronic structure becomes discretized when TM atoms are adsorbed on finite segments of SWNTs. Once coupled with nonmagnetic metal electrodes, these magnetic needles or nanomagnets can perform as spin-dependent resonant tunneling devices. The electronic and magnetic properties of these nanomagnets can be engineered depending on the type and decoration of adsorbed TM atom as well as the size and symmetry of the tube. Our study is performed by using first-principles pseudopotential plane wave method within spin-polarized density functional method.

    • Received 19 January 2006

    DOI:https://doi.org/10.1103/PhysRevB.74.125404

    ©2006 American Physical Society

    Authors & Affiliations

    E. Durgun and S. Ciraci*

    • Department of Physics, Bilkent University, Ankara 06800, Turkey

    • *Electronic address: ciraci@fen.bilkent.edu.tr

    Article Text (Subscription Required)

    Click to Expand

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 74, Iss. 12 — 15 September 2006

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Physical Review B

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×