Voltage-tunable ferromagnetism in semimagnetic quantum dots with few particles: Magnetic polarons and electrical capacitance

Alexander O. Govorov
Phys. Rev. B 72, 075359 – Published 25 August 2005

Abstract

Magnetic semiconductor quantum dots with a few carriers represent an interesting model system where ferromagnetic interactions can be tuned by voltage. By designing the geometry of a doped quantum dot, one can tailor the anisotropic quantum states of magnetic polarons. The strong anisotropy of magnetic polaron states in disklike quantum dots with holes comes from the spin splitting in the valence band. The binding energy and spontaneous magnetization of quantum dots oscillate with the number of particles and reflect the shell structure. Due to the Coulomb interaction, the maximum binding energy and spin polarization of magnetic polarons occur in the regime of Hund’s rule when the total spin of holes in a quantum dot is maximum. With increasing number of particles in a quantum dot and for certain orbital configurations, the ferromagnetic state becomes especially stable or may have broken symmetry. In quantum dots with a strong ferromagnetic interaction, the ground state can undergo a transition from a magnetic to a nonmagnetic state with increasing temperature or decreasing exchange interaction. The characteristic temperature and fluctuations of magnetic polarons depend on the binding energy and degeneracy of the shell. The capacitance spectra of magnetic quantum dots with few particles reveal the formation of polaron states.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 31 December 2004

DOI:https://doi.org/10.1103/PhysRevB.72.075359

©2005 American Physical Society

Authors & Affiliations

Alexander O. Govorov

  • Department of Physics and Astronomy, Condensed Matter and Surface Science Program, Ohio University, Athens, Ohio 45701-2979, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 72, Iss. 7 — 15 August 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×