Dynamical properties of the Anderson impurity model within a diagrammatic pseudoparticle approach

S. Kirchner, J. Kroha, and P. Wölfle
Phys. Rev. B 70, 165102 – Published 12 October 2004

Abstract

The Anderson model of a twofold spin degenerate impurity level in the limit of infinite Coulomb repulsion, U, coupled to one and two degenerate conduction bands or channels, is considered in pseudo-particle representation. We extend the conserving T-matrix approximation (CTMA), a general diagrammatic approximation scheme based on a fully renormalized computation of two-particle vertex functions in the spin and in the charge channel, to the calculation of thermodynamic and spectral properties. In the single-channel case, the CTMA yields in the Kondo regime a temperature independent Pauli spin susceptibility for temperatures below the Kondo temperature TK and down to the lowest temperatures considered, reproducing the exact spin screening in the Fermi liquid state. The impurity spectral density appears to remain non-singular down to the lowest temperatures, in agreement with Fermi liquid behavior. However, the unitarity sum rule, which is crucial for an impurity solver like the CTMA to be applicable within dynamical mean field theories for strongly correlated lattice models, is overestimated at the lowest temperatures. We argue that this shortcoming may be due to numerical imprecision and discuss an appropriate scheme for its correction. In the two-channel case, the spectral density calculated within CTMA exhibits qualitatively the correct non-Fermi liquid behavior at low temperatures, i.e., a power law singularity.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
10 More
  • Received 7 April 2004

DOI:https://doi.org/10.1103/PhysRevB.70.165102

©2004 American Physical Society

Authors & Affiliations

S. Kirchner

  • Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

J. Kroha

  • Physikalisches Institut, Universität Bonn, 53115 Bonn, Germany

P. Wölfle

  • Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 70, Iss. 16 — 15 October 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×