Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model

M. Tsuchiizu and A. Furusaki
Phys. Rev. B 69, 035103 – Published 15 January 2004
PDFExport Citation

Abstract

We revisit the ground-state phase diagram of the one-dimensional half-filled extended Hubbard model with on-site (U) and nearest-neighbor (V) repulsive interactions. In the first half of the paper, using the weak-coupling renormalization-group approach (g-ology) including second-order corrections to the coupling constants, we show that bond-charge-density-wave (BCDW) phase exists for U2V in between charge-density-wave (CDW) and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons disfavors the BCDW state and leads to a bicritical point where the CDW-BCDW and SDW-BCDW continuous-transition lines merge into the CDW-SDW first-order transition line. In the second half of the paper, we investigate the phase diagram of the extended Hubbard model with either additional staggered site potential Δ or bond alternation δ. Although the alternating site potential Δ strongly favors the CDW state (that is, a band insulator), the BCDW state is not destroyed completely and occupies a finite region in the phase diagram. Our result is a natural generalization of the work by Fabrizio, Gogolin, and Nersesyan [Phys. Rev. Lett. 83, 2014 (1999)], who predicted the existence of a spontaneously dimerized insulating state between a band insulator and a Mott insulator in the phase diagram of the ionic Hubbard model. The bond alternation δ destroys the SDW state and changes it into the BCDW state (or Peierls insulating state). As a result the phase diagram of the model with δ contains only a single critical line separating the Peierls insulator phase and the CDW phase. The addition of Δ or δ changes the universality class of the CDW-BCDW transition from the Gaussian transition into the Ising transition.

  • Received 7 August 2003

DOI:https://doi.org/10.1103/PhysRevB.69.035103

©2004 American Physical Society

Authors & Affiliations

M. Tsuchiizu1,2 and A. Furusaki1,3

  • 1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
  • 2Department of Physics, Nagoya University, Nagoya 464-8602, Japan
  • 3Condensed-Matter Theory Laboratory, The Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan

References (Subscription Required)

Click to Expand
Issue

Vol. 69, Iss. 3 — 15 January 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×