Tight-binding g-factor calculations of CdSe nanostructures

Joshua Schrier and K. Birgitta Whaley
Phys. Rev. B 67, 235301 – Published 4 June 2003
PDFExport Citation

Abstract

The Landé g factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rodlike structures. In particular, there is a discontinuity in the magnitude of the g factor and a transition from anisotropic to isotropic g factor tensor at aspect ratio 1.3. For the neutral systems, we analyze the electron g factor of both the conduction- and valence-band electrons. We find that the behavior of the electron g factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g factor value is dependent on the details of the surface model. Comparison with recent measurements of g factors for CdSe nanocrystals suggests that the shape-dependent transition may be responsible for the observations of anomalous numbers of g factors at certain nanocrystal sizes.

  • Received 18 December 2002

DOI:https://doi.org/10.1103/PhysRevB.67.235301

©2003 American Physical Society

Authors & Affiliations

Joshua Schrier and K. Birgitta Whaley

  • Department of Chemistry and Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720

References (Subscription Required)

Click to Expand
Issue

Vol. 67, Iss. 23 — 15 June 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×