Origin of enhanced dynamic nuclear polarization and all-optical nuclear magnetic resonance in GaAs quantum wells

G. Salis, D. D. Awschalom, Y. Ohno, and H. Ohno
Phys. Rev. B 64, 195304 – Published 12 October 2001
PDFExport Citation

Abstract

Time-resolved optical measurements of electron-spin dynamics in a (110) GaAs quantum well are used to study the consequences of a strongly anisotropic electron g tensor, and the origin of previously discovered all-optical nuclear magnetic resonance. All components of the g tensor are measured, and a strong anisotropy even along the in-plane directions is found. The amplitudes of the spin signal allow the study of the spatial directions of the injected spin and its precession axis. Surprisingly efficient dynamic nuclear polarization in a geometry where the electron spins are injected almost transverse to the applied magnetic field is attributed to an enhanced nonprecessing electron spin component. The small absolute value of the electron g factor combined with efficient nuclear spin polarization leads to large nuclear fields that dominate electron spin precession at low temperatures. These effects allow for sensitive detection of all-optical nuclear magnetic resonance induced by periodically excited quantum-well electrons. The mechanism of previously observed Δm=2 transitions is investigated and found to be attributable to electric quadrupole coupling, whereas Δm=1 transitions show signatures of both quadrupole and electron-spin induced magnetic dipole coupling.

  • Received 27 April 2001

DOI:https://doi.org/10.1103/PhysRevB.64.195304

©2001 American Physical Society

Authors & Affiliations

G. Salis and D. D. Awschalom

  • Department of Physics, University of California, Santa Barbara, California 93106

Y. Ohno and H. Ohno

  • Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

References (Subscription Required)

Click to Expand
Issue

Vol. 64, Iss. 19 — 15 November 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×