Electron and hole relaxation pathways in semiconductor quantum dots

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi
Phys. Rev. B 60, 13740 – Published 15 November 1999
PDFExport Citation

Abstract

Femtosecond (fs) broad-band transient absorption (TA) is used to study the intraband relaxation and depopulation dynamics of electron and hole quantized states in CdSe nanocrystals (NC’s) with a range of surface properties. Instead of the drastic reduction in the energy relaxation rate expected due to a “phonon bottleneck,” we observe a fast subpicosecond 1P-to-1S electron relaxation, with the rate exceeding that due to phonon emission in bulk semiconductors. The energy relaxation is enhanced with reducing the NC’s radius, and does not show any dependence on the NC surface properties (quality of the surface passivation). These data indicate that electron energy relaxation occurs by neither multiphonon emission nor by coupling to surface defects, but is likely meditated by Auger-type electron-hole energy transfer. We use fs infrared TA to probe electron and hole intraband transitions, which allows us to distinguish between electron and hole relaxation pathways leading to the depopulation of NC quantized states. In contrast to the electron relaxation, which is controlled by NC surface passivation, the depopulation of hole quantized states is extremely fast (sub-ps-to-ps time scales) in all types of samples, independent of NC surface treatment (including NC’s overcoated with a ZnS layer). Our results indicate that ultrafast hole dynamics are not due to trapping at localized surface defects such as a vacancy, but rather arise from relaxation into intrinsic NC states or intrinsically unpassivated interface states.

  • Received 15 March 1999

DOI:https://doi.org/10.1103/PhysRevB.60.13740

©1999 American Physical Society

Authors & Affiliations

V. I. Klimov* and D. W. McBranch

  • Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

C. A. Leatherdale and M. G. Bawendi

  • Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

  • *Electronic address: klimov@lanl.gov

References (Subscription Required)

Click to Expand
Issue

Vol. 60, Iss. 19 — 15 November 1999

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×