Direct and indirect excitation mechanisms in two-photon photoemission spectroscopy of Cu(111) and CO/Cu(111)

M. Wolf, A. Hotzel, E. Knoesel, and D. Velic
Phys. Rev. B 59, 5926 – Published 15 February 1999
PDFExport Citation

Abstract

It is demonstrated that the dependence of the two-photon photoemission (2PPE) yield on the polarization of the exciting laser light provides detailed information about the excitation mechanism and the orientation of transition dipole moments in the 2PPE process. In particular, it is possible to distinguish between a direct two-photon excitation process, where both electronic transitions are induced by the electric fields at the surface, and an indirect mechanism, where the first excitation step occurs in the substrate. In the latter process the intermediate state in 2PPE is populated by scattering of photoexcited hot electrons from the substrate, which are subsequently photoemitted by the second laser pulse. The analysis is applied to 2PPE from clean and CO covered Cu(111). Furthermore, we have derived analytical expressions for the 2PPE signal based on the optical Bloch equations for a three-level system excited with continuous light beams. They allow us to calculate 2PPE spectra of surface states for a variety of cases.

  • Received 1 September 1998

DOI:https://doi.org/10.1103/PhysRevB.59.5926

©1999 American Physical Society

Authors & Affiliations

M. Wolf, A. Hotzel, E. Knoesel, and D. Velic

  • Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

References (Subscription Required)

Click to Expand
Issue

Vol. 59, Iss. 8 — 15 February 1999

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×