Model for the effect of finite phase-coherence length on resonant transmission and capture by quantum wells

G. A. Baraff
Phys. Rev. B 58, 13799 – Published 15 November 1998
PDFExport Citation

Abstract

We study the effect of an imaginary potential and (separately) of a finite coherence length on the transmission, reflection, and capture fractions for a thermal distribution of carriers incident on a single quantum well. The formalism used is closely related to one used by Kuhn and Mahler for the same purpose. Closed-form expressions are obtained for the three transport fractions resulting from a single incident beam. Three independent fitting parameters are used in this formalism, namely, the size of the imaginary potential, the extent it penetrates into the barriers adjacent to the well, and the phase-coherence length. This last is a length scale associated with a correlation function that appears when the phase of the wave function is treated as a stochastic variable. We show that the parameters can be chosen so that the transport fractions agree with those calculated from first principles, and show how a shortening of the coherence length, e.g., by electron-electron interactions that have been left out of the first-principles calculation, destroys the resonant behavior of these fractions predicted by Brum and Bastard [Phys. Rev. B 33, 1420 (1986)].

  • Received 18 May 1998

DOI:https://doi.org/10.1103/PhysRevB.58.13799

©1998 American Physical Society

Authors & Affiliations

G. A. Baraff

  • Lucent Technologies Bell Laboratories, Murray Hill, New Jersey 07974

References (Subscription Required)

Click to Expand
Issue

Vol. 58, Iss. 20 — 15 November 1998

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×