Bose-Einstein statistics of an excitonic gas in two dimensions: Excitons and biexcitons in a GaAs quantum well

J. C. Kim and J. P. Wolfe
Phys. Rev. B 57, 9861 – Published 15 April 1998
PDFExport Citation

Abstract

Intense photoexcitation of a GaAs quantum well produces a dense gas of free excitons that can pairwise combine to form biexcitons. At sufficiently high density where interparticle spacing is comparable to the thermal deBroglie wavelength, such a two-component gas confined to two-dimensional motion may exhibit quantum-statistical behavior. In this paper, we theoretically show how quantum statistics modifies the equilibrium-density relationship between excitons and biexcitons from that of a classical square law. We also experimentally examine a gas of excitons and biexcitons in GaAs quantum wells and find the predicted signature of Bose-Einstein statistics: a saturation of the exciton density with a continued growth of the biexciton density, as the pair density is increased. For a two-dimensional excitonic gas at a temperature of 5 K inside a 100-Å GaAs quantum well, the calculated pair density at the onset of excitonic saturation is only about 1×1011cm2, a density readily attained by photoexcitation with 5-ps laser pulses focused to a 3μm spot. Concurrent with the saturation behavior with increasing density, we observe a gradual broadening and blueshifting of the luminescence peaks, indicating the onset of many-particle effects. Also, the deduced ratio of the total radiative rate of a biexciton to that of an exciton is considerably smaller than what might be expected from simple kinetic arguments. Thus, it seems that a rigorous understanding of the spectral line shapes and luminescence intensities is needed to support our interpretation of Bose-Einstein statistics in this system.

  • Received 6 October 1997

DOI:https://doi.org/10.1103/PhysRevB.57.9861

©1998 American Physical Society

Authors & Affiliations

J. C. Kim* and J. P. Wolfe

  • Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

  • *Present address: Department of Physics, University of Cincinnati, Cincinnati, OH 45221.

References (Subscription Required)

Click to Expand
Issue

Vol. 57, Iss. 16 — 15 April 1998

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×