Nanocrystalline diamond: Effect of confinement, pressure, and heating on phonon modes

Magnus J. Lipp, Valentín García Baonza, William J. Evans, and Hector E. Lorenzana
Phys. Rev. B 56, 5978 – Published 1 September 1997
PDFExport Citation

Abstract

Micro- and nanocrystalline systems exhibit properties that differ markedly from bulk systems. Diamond, a prototypical system, demonstrates a broadening, shift, and emergence of Raman phonon modes that are believed to originate from finite-size effects. Such information should be useful in constraining confinement models developed to describe the state of these mesoscopic systems. For example, previous investigations have analyzed crystallite size and stresses in scientifically and technologically relevant environments, including chemical-vapor-deposition diamond films and diamond nanocomposites. We have experimentally measured the effect on the diamond Raman phonon modes due to confinement, pressure, and heating effects. At ambient pressure, we present Raman measurements for diamond crystallites ranging from 6 nm to 10 μm, which were synthesized by both static and dynamic techniques. The Raman spectra obtained from the statically synthesized samples exhibit a characteristic strong and narrow diamond band, while those dynamically synthesized exhibit both diamond and graphiticlike features. A redshift of the diamond Raman band is observed for decreasing particle size. However, the pressure dependence of the phonon is about the same as that for the bulk system up to 30 kbar for crystallite sizes between 6 and 10 nm. Our measurements also indicate that heating effects from the incident laser dramatically affect the measured Raman spectra. This result leads us to an explanation for discrepancies among previously published results. We show that crystallite size and stress information cannot be determined without compensating for heating effects. Lastly, the phonon confinement model is able to explain the shifts of the Raman modes with size.

  • Received 22 January 1997

DOI:https://doi.org/10.1103/PhysRevB.56.5978

©1997 American Physical Society

Authors & Affiliations

Magnus J. Lipp, Valentín García Baonza, William J. Evans, and Hector E. Lorenzana

  • Physics and Space Technology Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551

References (Subscription Required)

Click to Expand
Issue

Vol. 56, Iss. 10 — 1 September 1997

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×