Electron states and luminescence transition in porous silicon

L. Dorigoni, O. Bisi, F. Bernardini, and Stefano Ossicini
Phys. Rev. B 53, 4557 – Published 15 February 1996
PDFExport Citation

Abstract

The theoretical analysis of two different Si wires of size 5×4 and 3×4, simulating porous Si, has been performed through the linear-muffin-tin-orbitals method in the atomic sphere approximation. All the atomic core energies were self-consistently computed and used to directly compare the energies of the quantum wires and that of the crystalline Si, by aligning the 2p core level of a Si atom located at the center of the wire to that corresponding to crystalline Si. The optical properties of the wires have been computed by evaluating the imaginary part of the dielectric function. The main results are (i) the opening of the gap is asymmetric; 1/3 of the widening is in the valence band, while 2/3 in the conduction band; (ii) the near band-gap states originate mainly from Si atoms located at the center of the wire; (iii) the imaginary part of the dielectric function shows a low-energy structure, strongly anisotropic, that follows the blueshift for the gap and is identified as responsible of the luminescence transition; (iv) the spatial localization of the valence- and conduction-band states participating in the luminescence transition shows that all the Si atoms of the wire are collectively involved. © 1996 The American Physical Society.

  • Received 10 October 1995

DOI:https://doi.org/10.1103/PhysRevB.53.4557

©1996 American Physical Society

Authors & Affiliations

L. Dorigoni and O. Bisi

  • Istituto Nazionale Fisica Della Materia and Dipartimento di Fisica, Universitá di Trento, I-38050 Povo (Trento), Italy

F. Bernardini and Stefano Ossicini

  • Istituto Nazionale Fisica Della Materia and Dipartimento di Fisica, Universitá di Modena, I-41100 Modena, Italy

References (Subscription Required)

Click to Expand
Issue

Vol. 53, Iss. 8 — 15 February 1996

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×