Ionization balance in semiconductor quantum-dot lasers

Janet L. Pan
Phys. Rev. B 49, 2536 – Published 15 January 1994
PDFExport Citation

Abstract

The commonly assumed quasiequilibrium particle distribution with the same quasi-Fermi-level for all quantum-dot carriers in the same energy (conduction or valence) band is found not to be valid for a wide range of temperatures at the inversion populations and bound energy separations (greater than a LO phonon energy) used in the literature. Bound state occupation factors obtained from the steady state solution of rate equations describing the ionization balance in room-temperature 100-Å-radius GaAs quantum dots whose centers are separated by 400 Å are found to be very different from the quasiequilibrium distribution used in an example from the literature. In such quantum dots, bound state transitions result from collisions between charged particles via the Coulomb interaction, and from interband and intraband radiative processes. The critical free electron concentration above which collisional processes can establish a quasiequilibrium in the conduction band is found to exceed 1019 cm3. Our numerical solution is in good agreement with Pitaevskii’s model from atomic physics of an electron random walk in energy as modeled by a Fokker-Planck equation. In our simple model, electrons are captured into a bound conduction band state via three-body recombination and phonon emission, and drop into lower energy bound states via a series of collisional deexcitations before combining with a valence band hole. Solution of the rate equations is standard in numerical studies of stimulated emission in atomic plasmas, but our present discussion is, to our knowledge, the first in the literature on semiconductor quantum-dot lasers.

  • Received 2 July 1993

DOI:https://doi.org/10.1103/PhysRevB.49.2536

©1994 American Physical Society

Authors & Affiliations

Janet L. Pan

  • Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

References (Subscription Required)

Click to Expand
Issue

Vol. 49, Iss. 4 — 15 January 1994

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×