Hot-carrier cooling in GaAs: Quantum wells versus bulk

Y. Rosenwaks, M. C. Hanna, D. H. Levi, D. M. Szmyd, R. K. Ahrenkiel, and A. J. Nozik
Phys. Rev. B 48, 14675 – Published 15 November 1993
PDFExport Citation

Abstract

Hot-electron cooling dynamics in photoexcited bulk and quantum-well GaAs structures were determined using time-correlated single-photon counting of photoluminescence (PL) decay. Hot-electron cooling curves were generated from analyses of the time-resolved PL spectra. The time constant characterizing the hot-electron energy-loss rate, τavg, was then determined, taking into account electron degeneracy and the time dependence of the quasi-Fermi-level. This analysis was also applied to earlier data obtained by Pelouch et al. with the same samples, but based on PL up-conversion experiments with <80 fs temporal resolution. Both sets of experiments and analyses show that the hot-electron cooling rate can be much slower in GaAs quantum wells compared (at the same photogenerated carrier density) to bulk GaAs when this density is above a critical value. This critical density was found to range from high 1017 to low 1018 cm3, depending upon the experimental technique; at the highest carrier densities, values of τavg for quantum wells were found to be many hundreds of ps.

  • Received 9 February 1993

DOI:https://doi.org/10.1103/PhysRevB.48.14675

©1993 American Physical Society

Authors & Affiliations

Y. Rosenwaks, M. C. Hanna, D. H. Levi, D. M. Szmyd, R. K. Ahrenkiel, and A. J. Nozik

  • National Renewable Energy Laboratory, Golden, Colorado 80401

References (Subscription Required)

Click to Expand
Issue

Vol. 48, Iss. 19 — 15 November 1993

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×