Femtosecond photoionization of atoms under noise

Kamal P. Singh and Jan M. Rost
Phys. Rev. A 76, 063403 – Published 6 December 2007

Abstract

We investigate the effect of incoherent perturbations on atomic photoionization due to a femtosecond midinfrared laser pulse by solving the time-dependent stochastic Schrödinger equation. For a weak laser pulse which causes almost no ionization, an addition of a Gaussian white noise to the pulse leads to a significantly enhanced ionization probability. Tuning the noise level, a stochastic resonancelike curve is observed showing the existence of an optimum noise for a given laser pulse. Besides studying the sensitivity of the obtained enhancement curve on the pulse parameters, such as the pulse duration and peak amplitude, we suggest that experimentally realizable broadband chaotic light can also be used instead of the white noise to observe similar features. The underlying enhancement mechanism is analyzed in the frequency domain by computing a frequency-resolved atomic gain profile, as well as in the time domain by controlling the relative delay between the action of the laser pulse and noise.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 3 September 2007

DOI:https://doi.org/10.1103/PhysRevA.76.063403

©2007 American Physical Society

Authors & Affiliations

Kamal P. Singh and Jan M. Rost

  • Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 76, Iss. 6 — December 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×