• Rapid Communication

Complete fourth-order relativistic many-body calculations for atoms

Caleb C. Cannon and Andrei Derevianko
Phys. Rev. A 69, 030502(R) – Published 24 March 2004

Abstract

We report, to our knowledge, the first relativistic calculation for many-electron atoms complete through the fourth order of many-body perturbation theory. Owing to an overwhelmingly large number of underlying diagrams, the calculations are aided by our suite of symbolic algebra tools. We augment all-order single-double excitation method with 1648 omitted fourth-order diagrams and compute amplitudes of principal transitions in Na. The resulting ab initio relativistic electric dipole amplitudes are in an excellent agreement with 0.05%-accurate experimental values. Analysis of previously unmanageable classes of diagrams provides a useful guide to a design of even more accurate, yet practical, many-body methods.

  • Figure
  • Received 14 January 2004

DOI:https://doi.org/10.1103/PhysRevA.69.030502

©2004 American Physical Society

Authors & Affiliations

Caleb C. Cannon and Andrei Derevianko

  • Department of Physics, University of Nevada, Reno, Nevada 89557, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 69, Iss. 3 — March 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×