Efficient measurements, purification, and bounds on the mutual information

Kurt Jacobs
Phys. Rev. A 68, 054302 – Published 4 November 2003
PDFExport Citation

Abstract

When a measurement is made on a quantum system in which classical information is encoded, the measurement reduces the observers’ average Shannon entropy for the encoding ensemble. This reduction, being the mutual information, is always non-negative. For efficient measurements the state is also purified; that is, on average, the observers’ von Neumann entropy for the state of the system is also reduced by a non-negative amount. Here we point out that by rewriting a bound derived by Hall [Phys. Rev. A 55, 100 (1997)], which is dual to the Holevo bound, one finds that for efficient measurements, the mutual information is bounded by the reduction in the von Neumann entropy. We also show that this result, which provides a physical interpretation for Hall’s bound, may be derived directly from the Schumacher-Westmoreland-Wootters theorem [Phys. Rev. Lett. 76, 3452 (1996)]. We discuss these bounds, and their relationship to another bound, valid for efficient measurements on pure state ensembles, which involves the subentropy.

  • Received 25 July 2003

DOI:https://doi.org/10.1103/PhysRevA.68.054302

©2003 American Physical Society

Authors & Affiliations

Kurt Jacobs

  • Centre for Quantum Computer Technology, Centre for Quantum Dynamics, School of Science, Griffith University, Nathan 4111, Brisbane, Australia

References (Subscription Required)

Click to Expand
Issue

Vol. 68, Iss. 5 — November 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×