Differential cross section for molecular ionization by electron impact in the adiabatic approximation

R. W. Zurales and R. R. Lucchese
Phys. Rev. A 35, 2852 – Published 1 April 1987
PDFExport Citation

Abstract

Molecular ionization by electron impact is examined in the Born-Oppenheimer approximation where the rotational and vibrational motions of the nuclei are considered separable. Expressions for the differential cross section, applicable to an exact treatment of the adiabatic electronic wave functions, are derived in terms of a momentum-transferred summation for three levels of experimental resolution, spatially unpolarized, spatially unpolarized and rotationally unresolved, and spatially unpolarized and rotationally and vibrationally unresolved. Several possible advantages of a momentum-transferred summation relative to a partial-wave summation are discussed. Most importantly, the expected relatively rapid convergence of the momentum-transferred summation effectively reduces the number of transition matrix elements which must be calculated. Additionally, the momentum-transferred summation involves an ‘‘incoherent’’ summation which, in general, is more easily computed. Lastly, we present explicit expressions for the transition probabilities in the plane-wave and distorted-wave Born approximations.

  • Received 7 April 1986

DOI:https://doi.org/10.1103/PhysRevA.35.2852

©1987 American Physical Society

Authors & Affiliations

R. W. Zurales and R. R. Lucchese

  • Department of Chemistry, Texas A&M University, College Station, Texas 77843

References (Subscription Required)

Click to Expand
Issue

Vol. 35, Iss. 7 — April 1987

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×